
J .  Fluid Me&. (1984), vol. 138, pp.  21-52 

Printed in Great Britain 

21 

Numerical investigation of supercritical 
Taylor-vortex flow for a wide gap 

By H. F A S E L ~ A N D  0. BOOZ 
Institut A fur Mechanik, Universitiit Stuttgart, Stuttgart, Germany 

(Received 18 February 1983) 

For a wide gap (R,/R, = 0.5) and large aspect ratios L / d ,  axisymmetric Taylor-vortex 
flow has been observed in experiments up to very high supercritical Taylor (or 
Reynolds) numbers. This axisymmetric Taylor-vortex flow was investigated numeri- 
cally by solving the Navier-Stokes equations using a very accurate (fourth-order 
in space) implicit finite-difference method. The high-order accuracy of the numerical 
method, in combination with large numbers of grid points used in the calculations, 
yielded accurate and reliable results for large supercritical Taylor numbers of up to 
lOOTu, (or lORe,). Prior to this study numerical solutions were reported up to only 
16Tu,. The emphasis of the present paper is placed upon displaying and elaborating 
the details of the flow field for large supercritical Taylor numbers. The flow field 
undergoes drastic changes as the Taylor number is increased from just supercritical 
to lOOTu,. Spectral analysis (with respect to z )  of the flow variables indicates that 
the number of harmonics contributing substantially to the total solution increases 
sharply when the Taylor number is raised. The number of relevant harmonics is 
already unexpectedly high at moderate supercritical Ta. For larger Taylor numbers, 
the evolution of a jetlike or shocklike flow structure can be observed. In  the axial 
plane, boundary layers develop along the inner and outer cylinder walls while the 
flow in the core region of the Taylor cells behaves in an increasingly inviscid manner. 

1. Introduction 
The pioneering work of Taylor (1923) on the instability of Couette flow between 

coaxial rotating cylinders has inspired numerous significant investigations, both 
theoretical and experimental. Using linear stability theory, Taylor determined a 
condition for stability of Couette flow for the case of a small gap, i.e. he determined 
a critical Taylor number Tu,. The theoretical calculations were verified convincingly 
by Taylor’s own laboratory experiments, which showed that, with the inner cylinder 
rotating and the outer cylinder a t  rest, the instability leads to a secondary motion 
with cellular toroidal vortices of practically regular spacing in the axial direction. 

I n  the stability theory analysis of subsequent investigators, the small-gap-width 
limitation was successfully removed to allow for the determination of critical Taylor 
numbers for large finite gap widths (see e.g. Chandrasekhar 1961 ; Kirchgassner 1961 ; 
Kirchglssner & Sorger 1969; Krylov & Misnik 1963). Kirchgassner (1966) and Velte 
(1966) (see also Kirchgassner & Sorger) provided rigorous analytical proofs that the 
critical Taylor number Ta, is a bifurcation point for the time-independent Navier- 
Stokes equations and that for Tu > Ta, two types of steady solutions exist: the 
Couette flow and the Taylor-vortex flow. 

t Present address : University of Arizona, Aerospace and Mechanical Engineering Department, 
Tucson, AZ 85721. 



22 H .  Fasel and 0. Boo2 

Using weakly nonlinear analysis, the structure of the supercritical Taylor-vortex 
motion was calculated by Stuart (1958), Davey (1962), Reynolds & Potter (1967) and 
Kirchgassner & Sorger (1969). However, these investigations were limited to small 
gap width and/or small supercritical Taylor numbers. The different approaches taken 
in computing the supercritical flows and the difficulties involved arc discussed in 
detail in the survey papers by Di Prima & Rogers (1969) and Stuart (1971). 

As the Taylor number is increased beyond Ta, experimental evidence has shown 
(especially for larger gap widths) that  for a given Ta various axial wavelengths are 
possible. The wavelength observed depends on the preceding time history of evolution 
to the supercritical state (see e.g. Snyder 1969; Burkhalter & Koschmieder 1975). 
Thus, beyond Ta, one is confronted with a problem of non-uniqueness, which has 
yet to be resolved satisfactorily. From nonlinear stability analysis of the Taylor-vortex 
motion, Kogelman & Di Prima (1970) and Nakaya (1974) determined subregions of 
wavenumber space where stable solutions do exist for supercritical Taylor numbers. 
These subregions can be considerably smaller than the unstable region predicted by 
linear stability analysis of the Couette flow. 

For small gap widths, the supercritical Reynolds number regime in which the 
axisymmetric vortex motion can be observed experimentally is very small. Indeed, 
another instability sets in as the Taylor-vortex flow becomes unstable with respect 
to azimuthal disturbances. This leads to the wavy vortex or the doubly periodic 
vortex motion, which, in addition to  the axial periodicity, is also periodic in time. 
This instability and the structure of the doubly periodic motion were studied in great 
detail in experiments by Coles (1965) (see also Schulz-Grunow & Hein 1956; Schwarz, 
Springett & Donnelly 1964), where particular attention was also given to the question 
of non-uniqueness. For this case this question is even more difficult to  deal with since, 
for a given Taylor number, the azimuthal wavenumber can also vary. The instability 
that leads to the wavy vortex motion was investigated theoretically by Davey, Di 
Prima & Stuart (1968) and later by Eagles (1974) using amplitude expansions for the 
Taylor-vortex flow up to  third and fifth order respectively. By solving the Navier- 
Stokes equations numerically, Meyer (1969) made an attempt to investigate the 
stability of the Taylor-vortex flow and to calculate the doubly periodic motion for 
a case with R J R ,  = 0.8334. He employed an explicit finite-difference scheme of 
first-order accuracy in space and time, and used Fourier expansion in the azimuthal 
direction (retaining only the first mode). 

As the gap width is increased, the second instability sets in a t  higher and higher 
Taylor numbers. This trend was confirmed in a recent investigation of various gap 
widths by Jones (1981), who analysed the stability of axisymmetric Taylor-vortex 
flow with respect to small non-axisymmetric disturbances. In  the investigation by 
Jones, the axisymmetric Taylor-vortex flow was calculated numerically by use of a 
Galerkin method to solve the Navier-Stokes equations. 

I n  experiments with a gap width of R,  fR, = 0.5, the singly periodic Taylor-vortex 
motion exists up to very large Taylor numbers. Snyder & Lambert (1966) report the 
first appearance of significant azimuthal waviness a t  lOOTa,. However, they suggest 
that  this was probably due to end effects of the cylinders. This interpretation seems 
to be supported by their observation that the azimuthally varying component is 
responsible for less than 5% of the total amplitude up to 500Ta,. In  recent 
experiments by Park & Donnelly (198O), pure singly periodic motion was observed 
up to Ta = 1340000, which corresponds approximately to 440Ta, or 21Re,. Thus, 
from experimental evidence i t  is not a t  all clear if, as the 'Taylor number is increased, 
the flow in a wide gap does undergo any transition to the doubly periodic flow before 
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breakdown occurs to  the fully turbulent motion. For a wide gap, the torque 
dependency on Taylor numbers was investigated experimentally in great detail by 
Donnelly (1958, see also Donnelly & Simon 1960). Moreover, using a theoretical model 
assuming the Taylor vortices to consist of an inviscid core surrounded by boundary 
layers, Batchelor (see Donnelly & Simon 1960) derived a torque relationship that 
agreed reasonably well with Donnelly’s measurements for large Taylor numbers. 

However, relatively little is still known to date of the structure of the Taylor-vortex 
flow in a wide gap a t  high supercritical Taylor numbers. Theoretical predictions based 
on weakly nonlinear theories (e.g. Davey 1962) are not valid far from the critical 
Taylor number. Detailed measurements are also not available to date, and the only 
evidence concerning the structure of the flow is based on visualization techniques. 

Several attempts were made in the past to numerically investigate the singly 
periodic Taylor-vortex flow by solving the Navier-Stokes equations using digital 
computers. I n  most cases, infinite lengths of the cylinders were assumed, and thus, 
using periodic boundary conditions, the integration domain in the axial direction 
could be confined to one or two wavelengths (2 or 4 cells) of the expected Taylor-vortex 
motion. For example, Meyer (1967) developed a finite-difference method with an 
explicit time-marching procedure to calculate supercritical flows for small gap widths 
(R,/R, > 0.8334) up to  15Tuc. Considering the low (first-order) spatial accuracy of 
the difference method in combination with the relatively small number of grid points 
used in his study, details of the flow field were possibly not sufficiently resolved at  
the higher supercritical Taylor numbers. Similar considerations are also likely to be 
true for the calculations of Strawbridge & Hooper (1968), who also employed a 
first-order-accurate finite-difference method together with a relatively coarse mesh. 
The numerical investigations by Meyer also addressed the question of preferred 
wavelengths. However, i t  is questionable whether the calculations performed in this 
context were appropriate. In  any case, the implications of the numerical results shown 
are unclear (see Di Prima & Rogers 1969). For various large gap widths, Liu & Chen 
(1973) investigated the time evolution of the Taylor-vortex flow when the inner 
cylinder was impulsively started from rest. Employing an explicit finite-difference 
method of first-order accuracy in both space dimensions and in time, they reported 
good qualitative agreement with their experimental observations. 

The investigations of Rogers & Beard (1969) were similar in intent to  the 
investigations discussed in this paper. They applied a combination of a Fourier 
expansion in the axial direction and a second-order-accurate finite-difference ap- 
proximation for the radial direction to calculate the flow field for a wide gap with 
RJR, = 0.5. Calculations were performed up to 5Ta,, for which 6 Fourier modes were 
employed. Meyer-Spasche & Keller (1980) devised a method for accurately predicting 
the bifurcation point from Couette to Taylor-vortex flow ; this method is also based 
on Fourier expansion in the z-direction and finite-difference approximations of 
second-order accuracy in the r-direction. They calculated supercritical flows for small 
and large gap widths; for example, for RJR,  = 0.5 they used 8 modes in the z-direction 
and 15 points in the r-direction to calculate the flow up to  4Rec (16Tuc). 

The present study represents an attempt to investigate numerically details of the 
singly periodic Taylor-vortex flow in a wide gap with R1/R2 = 0.5 (and cylinders of 
infinite lengths) and for supercritical Reynolds numbers considerably larger than 
those in previous numerical investigations. To this end, a fully implicit finite-difference 
method was developed for solving the complete Navier-Stokes equations for incom- 
pressible axisymmetric flows. With emphasis being placed on reliable simulations of 
the flow field up to  large supercritical Taylor numbers, high accuracy of the numerical 
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Integration domain 

FIGURE 1. Integration domain and notation. 

method was of the utmost importance in order to  allow for adequate resolution of 
the ensuing large spatial gradients. To meet this requirement the finite-difference 
method developed is of fourth-order accuracy with respect to the space dimensions 
and of second-order accuracy with respect to time. On the basis of extensive test 
calculations, this accuracy can be considered sufficient to reliably calculate the flow 
up to about lOOTa, with the computer system available for this study (CD 6600). 

I n  this paper details of the Taylor-vortex motion are presented for a wide range 
of supercritical Taylor numbers. I n  particular, the evolution of the flow field as the 
Taylor number increases up to  IOOTu, is elaborated upon. With the fully implicit 
time-marching procedure employed in the numerical method, realistic simulations of 
the time-dependent behaviour are also possible. 

2. Basic equations 
Cylindrical coordinates (r,  8, z )  are used in this study. They are shown in figure 1 

together with the corresponding velocity components u, v, w. Assuming axisymmetric 
flow, the velocity components are independent of 0. For the case of cylinders of 
infinite length the integration domain for the numerical model can be reduced to a 
finite domain Z in the z-direction. Using periodicity conditions a t  the upper and lower 
boundaries the length 2 of the domain is to  contain integer multiples of the expected 
wavelength A,. 

For incompressible flows the Navier-Stokes equations can be written in a vorticity- 
velocity formulation, with a vorticity-transport equation for the vorticity component 
win the &direction (normal to the ( r ,  2)-plane), a momentum equation for the velocity 
component v in the &direction, and two Poisson equations for the velocity components 
in the r- and z-directions respectively: 
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where the Laplace operator 
A = -+--+- 

and the vorticity is defined as 
au aw 
az a r '  

w = --- 

The Poisson equations (3) and (4) are derived from the definition of vorticity (6) by 
differentiation with respect to z and r respectively, and by utilizing the continuity 
condition 

au 1 aw 
-+-u+- = 0. (7)  ar r az 

All variables in (1)-(7) are normalized by the radius of the inner cylinder &, the 
velocity at the inner cylinder and the kinematic viscosity P respectively. The 
dimensionless quantities relate to their dimensional counterparts, denoted by overbars, 

_ _  
The Reynolds number is defined as Re = V, RJij. 

For the numerical method (an implicit finite-difference method) employed in the 
present investigation, this formulation has a clear advantage over the primitive vari- 
able formulation (u, w, w , p )  with regard to computer storage requirements. Since the 
present formulation consists of only two equations that have time derivatives, in 
contrast to three equations with time derivatives for the (u, v, w , p )  formulation, less 
storage is required for an implicit time-marching procedure to retain the function 
values a t  preceding time levels. Of course, efficient use of available storage is of the 
utmost importance for investigations such as those intended in this study. This 
vorticity-velocity formulation is basically the axisymmetric extension ofthe vorticity- 
velocity formulation for plane flows which was used for numerical investigations of 
hydrodynamic stability of plane boundary-layer flows (Fasel 1974, 1976). There, for 
the plane case, this formulation of the Navier-Stokes equations consists of a 
vorticity-transport equation and two Poisson equations for the two velocity 
components. 

The system of partial differential equations (1)-(4) together with appropriate 
boundary conditions is sufficient to determine the vorticity w and the velocity 
components u, v, w. If in addition other quantities are desired, they can be calculated 
after w ,  u, v, UJ are determined a t  all grid points. For example, the dynamic pressure 
may be determined from the Poisson equation 

wherep = p/p  vi. Equation (9) is derived from the momentum equations for the radial 
and axial direction assuming axisymmetry and using the continuity condition (7 ) .  
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Also, a stream function, defined for the axisymmetric case by 

H. Fasel and 0. Booz 

which is obtained by inserting (10) into the definition of vorticity (6). The quantities 
on the right-hand sides of (9) and (10) are given a t  any time-step after solving (1)-(4). 
Thus, to determine the pressure or stream function requires numerical solutions of 
simple elliptic equations with appropriate boundary conditions. The boundary 
conditions are specified in the next paragraph. In  principle p and $ could also be 
determined by direct numerical integration: p ,  for example, from either of the two 
momentum equations in the r- or z-directions and II. from either (10a) or ( l o b ) .  
However, such an integration is inaccurate and thus this procedure is inferior to 
solving the elliptic equations (see Roache 1976). 

3. Boundary and initial conditions 
Boundary conditions 

At the upper and lower boundaries of the computational domain (see figure 1) 
periodicity conditions of the form 

f ( r ,  2, t )  = f ( r ,  0 , t )  (12) 

are imposed, where f represents any of the dependent variables. Z is the height of 
the integration domain, 2 = kh, for k = 1,2,  ... (A, is the wavelength). I n  principle, 
these conditions would be sufficient a t  the upper and lower boundaries to obtain 
numerical solutions. However, for practical reasons in representing the results and 
also in order to accelerate the numerical computations i t  is advantageous to fix the 
cell of the expected Taylor flow relative to the integration domain by imposing 

(13) 
additionally 

and/or 

These additional conditions are only valid if the cell boundaries of the Taylor vortex 
flow are plane and perpendicular to the z-axis. This assumption is consistent not only 
with experimental observations for the singly periodic flow but also with results of 
our calculations for which only the periodicity conditions (9) were imposed. 

w(r ,  0, t )  = 0 w ( r ,  0, t )  = 0. 

At the walls of the cylinders, r = R, and r = R,, the velocity components are 

(14) 

(15) 

1 
u ( r ,  z ,  t )  = 0 

w(r,  z ,  t )  = 0 

~ ( r ,  z ,  t )  = I.;(t) 

( r  = R,, R2), 
( r  = R,, R2), 

( r  = &), 

= 0 ( r  = R,), 

as only the case with the inner cylinder rotating and the outer cylinder at rest is 
considered here. The vorticity a t  the walls of the inner and outer cylinders is 
calculated from 

w(r ,  z ,  t )  = -- a w l  ( r  = R,, R,).  
ar r 
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Boundary conditions for the calculation of pressure and stream function 

For calculating the pressure by solving the Poisson equation (9), the following 
boundary conditions of the von Neumann type are used at  cylinder walls: 

ap i a Z u  
( r  = R2). 

ar - Re ar2 

They are obtained from the momentum equation in the r-direction. For calculating 
$ from (1 l ) ,  a boundary condition for $ a t  the cylinder walls is readily obtained from 
(10) as 

where, for convenience, the constant can be set equal to  zero. 

$ = constant ( r  = R,, R2), (17) 

Initial conditions 

For a calculation of unsteady flows, the flow field a t  t = 0 is given by specifying the 
initial values of the velocity components u, 21, u5 and of the vorticity w in the entire 
domain and on the boundaries 

(0 < z < 2, R, < r < R2). (18) 
u(r ,  z ,O)  = uo(r, z ) ,  

wfr, z , O )  = wo(r, z ) ,  

w(r, z , O )  = o0(r, z ) ,  

w ( r ,  z ,O)  = wo(r,  z )  

4. Numerical method 
For the solution of the governing equations (1)-(4) together with boundary and 

initial conditions (12-18) a fully implicit finite-difference method was developed. 
The full implicitness means that all difference approximations and function values, 
for both governing equations and boundary conditions, are evaluated at the most 
recent time level. The decision to adopt a fully implicit method instead of a partially 
implicit or an explicit approach, was influenced by successful attempts with a fully 
implicit method to investigate hydrodynamic stability of a plane Blasius boundary 
layer (Fasel 1976). The numerical method used for the present investigations 
represents a straightforward extension of the previous method for plane flows to 
axisymmetric flows. 

The computational grid and notation used in the method here are shown in figure 
2. M and N denote the number of grid points in the r- and z-directions respectively, 
Ar and Az are the grid spacings of the uniform grid. The coordinates of the grid points 
are given by 

(19) 1 
T = R , + ( m - l ) A r  

z = (n -1 )Az  

t = ZAt 

(m = 1,2, ..., M ) ,  

(n  = 1,2, ..., N ) ,  

( 1  = 0, 1,2, ...). 

For the approximation of the time derivatives, the following 3-point backward 
difference, 

1 *Iz at = - ( 3 w z - 4 ~ z - 1 + w 1 - 2 ) + O ( A t 2 ) ,  2 ~ t  (20) 

2 PLM 138 
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FIGURE 2 .  Computational mesh. 

and an analogous one for v, are employed, which lead to a 3-level method. Because 
of the fully implicit treatment (the velocity components in the convective terms are 
also taken a t  the most recent time level) the second-order accuracy in time is retained, 
and thus realistic time-dependent behaviour may be simulated. For the approximation 
of the space derivatives the fourth-order-accurate central-difference approximations 

are used for all variables and in both space dimensions throughout the computational 
domain, except for the grid points on the two grid lines immediately adjacent to the 
cylinder walls. I n  the calculation of vorticity a t  the walls, special treatment is 
required for these grid points to maintain overall fourth-order accuracy and 
consistency of the finite-difference formulation. 

The systems of equations resulting from the fully implicit approach are coupled 
with each other via the nonlinear terms in the vorticity-transport equation and the 
momentum equation; in addition they are coupled by the relationship (15) used for 
calculating vorticity a t  the cylinder walls. For the solution of this coupled system 
of equations a line-iteration procedure similar to the one described by Fasel (1974, 
1976) was developed. Here the line iteration is organized such that function values 
on grid lines parallel to the r-axis are determined by a direct-elimination procedure 
while proceeding iteratively in the z-direction. For the direct-elimination procedure 
the matrices involved are essentially pentadiagonal. Exceptions are the matrix 
elements resulting from the gridpoints a t  the wall and the two gridpoints adjacent 
to the wall. Because of the calculation of vorticity a t  the walls from (15), the equation 
system resulting from the vorticity-transport equation ( 1 )  is coupled with the system 
resulting from the Poisson equation (4) for w, and therefore the coupled systems have 
to be solved simultaneously. Possible decoupling of the two systems by taking the 
right-hand side of (15) a t  previous iteration levels (lagging) results in extremely poor 
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convergence behaviour of the entire line-iteration procedure. For the solution of the 
coupled pentadiagonal system an effective algorithm was developed, which is 
essentially an extension of the algorithm for coupled tridiagonal systems that was 
employed previously (Fasell974,1976). For details of the numerical method see Booz 
(1980). 

5. Numerical results 
With the results presented here i t  is intended to provide details of the flow fields 

with emphasis on the changes of the flow when the Reynolds number is increased 
to large supercritical values. All results are for the case of a wide gap with RJR2 = 0.5;  
thus Ta = !$Re2. For these calculations the wavelength was fixed at  A, = 2.0, which 
is approximately the wavelength at  the critical Reynolds number; Davey (1962), for 
example, obtained A,, = 1.987, Kirchgassner & Sorger (1969) found A,, = 2.094, and 
the experimental investigations of Donnelly & Fultz yielded A,, = 2.03. 

One could argue that keeping the wavelength fixed may impose too large a 
constraint on such numerical simulations. However, as observed in experiments 
(Snyder & Lambert 1966) with an apparatus of aspect ratio Lld x 30, the wavelength 
was practically constant and equal to the critical wavelength up to lOTa,. A t  lOOTa, 
i t  differed from A, only by 10%. In the experiments of Burkhalter & Koschmieder 
(1979), also with Lld x 30, the wavelength remained constant up to Ta = 80 when the 
Taylor number was increased in a quasi-steady manner. On the basis of their 
experimental evidence, Burkhalter & Koschmieder concluded that the change of 
wavelength for larger Taylor numbers is caused by end effects, and for infinitely long 
cylinders the wavelength would not vary with Taylor number as long as the flow is 
singly periodic. 

In the present investigation, calculations were carried out starting with Reynolds 
numbers below the critical Reynolds number Re, = 68.19 and then increasing the 
Reynolds number up to Re, = 690, i.e. to more than 10Re, or lOOTa,. The 
integration domain in the z-direction comprised two wavelengths for calculations with 
Reynolds numbers up to 400 and one wavelength for Reynolds numbers larger than 
400. The number of grid points used in the calculations, for example a t  Re = 80, was 
NAr = 29 (points per wavelength in the z-direction) and M = 31 (points in the 
r-direction). With increasing Re, higher and higher accuracy is required, and therefore 
the number of grid points had to be increased accordingly. 

In order to obtain an indication of how the number of grid points should be 
adjusted, so-called ' convergence ' studies were performed, where for identical cases 
(i.e. identical Reynolds numbers, etc.) solutions were calculated for various numbers 
of grid points. Typical results of such calculations for Re = 80 and Re = 200 are shown 
in figure 3. There the azimuthal velocity component v for r = $(R, + R,) (middle of the 
gap) and z = 0 as well as the torque at the inner and outer cylinders are plotted versus 
the number of grid points M in the r-direction for fixed NAz, and versus NAz for fixed 
M .  It is obvious that, with increasing M and NAz respectively, the solutions 
asymptotically approach constant values. To obtain a quantitative indication of the 
deviation from the solution when smaller M and NAz are used in the computation, 
the relative deviation of 0.1 yo is marked in these plots with symbols -0- and n. The 
location of the symbol -0- indicates the value upon which the relative change is 
based. The vertical dotted lines in figure 3 indicate the values of M and Nhz 
respectively that were finally adopted for the convergence calculations for which the 
results are shown. Comparison of the curves in figure 3 for Re = 80 and Re = 200 

2-2 
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FIGURE 3. Dependence of numerical results on number of grid points used in the computation; for 
v in the middle of the gap and torque g at r = R, and r = R,. M = number of grid points in r-direction ; 
N,, = number of grid points per wavelength in z-direction. (a )  Re = 80; ( b )  Re = 200. 

indicates how the demand for accuracy, i.e. for more grid points, increases with larger 
Reynolds numbers. From convergence studies of this sort it was also learned that 
the difference of the torque between inner and outer cylinders (as seen in figure 3) 
is a very good measure of the quality of the spatial resolution, i.e. of whether the 
number of grid points is sufficient or not. For the results discussed in this paper, the 
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numbers of grid points used in the calculations were as follows: 

for 60.0 < Re < 72.5: M = 31, Nhz = 25; 

N,,, = 29; 

Nhz = 61 ; 

NAL = 81. 

72.5 < Re < 100: 

100 < Re < 425: 

425 < Re < 650: 

M = 33, 

M = 73, 

M = 97, 

31 

With these numbers of grid points, the relative deviation of the torque between inner 
and outer cylinder was always less than 0.35 yo (see table 1 )  and therefore, the results 
can be considered extremely reliable and accurate. 

5.1. Torque; critical Reynolds number 

In  figure 4 the torque obtained from the Navier-Stokes calculations is plotted versus 
Re. It is compared with the experimental measurements of Donnelly (1958) and the 
stability calculations by Davey (1962), as well as with the theoretical torque 
relationship by Batchelor (see Donnelly & Simon 1960). Here the torque _ _ _  (denoted - 
by 9 )  has been non-dimensionalized by the reference torque = V p  V, R,  L ( L  is the 
length of the cylinders). To facilitate detailed comparison of our numerical results 
with theoretical predictions, the torque data are also displayed in tabular form. In  
tables 1 and 2 the calculated torque a t  the inner and outer cylinder and the relative 
deviation between inner and outer cylinder are shown, together with the theoretical 
data by Davey and Batchelor. I n  the low supercritical Reynolds-number regime 
(which is plotted on an enlarged scale in figure 4 a )  the agreement with both Davey’s 
and Donnelly’s data is extraordinary, except for the deviation near the critical 
Reynolds number of both Davey’s and our results from the experimental data. This 
is probably due to experimental uncertainties, as it has been demonstrated that end 
effects (due to finite-length cylinders) and eccentricity (Cole 1976) can affect the 
transition from Couette to Taylor-vortex flow. 

For Reynolds numbers larger than approximately 75 (see figure 4a, table l ) ,  our 
Navier-Stokes solutions slightly overpredict the experimentally determined torque. 
Davey’s results slightly underpredict the torque, and the deviation increases with 
larger Reynolds numbers. This is, of course, not surprising since Davey’s analysis is 
based on expansions about the critical Reynolds number, and is therefore valid in 
a strict sense only for small supercritical Reynolds numbers. With this in mind the 
relatively good agreement of the torque predicted by Davey with our Navier-Stokes 
results and experimental data is even more remarkable. 

The slight but consistent deviation of the numerically determined torque (Navier- 
Stokes solutions) from the experimental measurements increases with larger Re, as 
seen in figure 4 ( b ) .  There the torque is plotted and compared with experimental data 
for the entire Reynolds-number regime for which Navier-Stokes solutions have been 
obtained. This consistent and increasing overprediction of the torque seems at first 
glance to  suggest insufficient spatial resolution to accommodate the larger gradients 
that  arise when Re is raised. However, as is evident from figure 3, if the resolution 
were insufficient (which is doubtful ; see the introductory remarks of §5), increasing 
the resolution, i.e. increasing the number of grid points in a calculation a t  a given 
Reynolds number, would lead to even slightly higher torque values. Thus the 
deviation between the numerically predicted and experimental torque cannot be 
explained by a possible lack of resolution in our calculations. It appears rather to 
be due to the experimental procedure. One possible explanation is that the axial 
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FIQURE 4. Variation of torque with Reynolds number: A, experiments (Donnelly 1958); --.-.--, 
stability theory (Davey 1962); ----, theory (Batchelor; see Donnelly & Simon 1960); -, 
present (Naviedtokes solution). (a )  Re = 60+85; ( b )  Re = 30+690. 

wavelength did change slightly in the experiments as the Reynolds number was 
increased, possibly because of end effects. As observed by Burkhalter & Koschmieder 
(1975), the end cells grow with increasing Reynolds number. The torque measurements 
of Donnelly were obtained with an aspect ratio L i d  of about 10, which was fixed over 
the entire Reynolds-number range. With such a relatively small aspect ratio, the 
effect of the growing end cells on the remaining vortex cells is obviously much stronger 
than for a larger L / d  ; see, for example, the experiments of Burkhalter & Koschmieder 
(1975) with a much larger L / d  of about 30. 

In figure 4 ( b )  (and table 2) the torque obtained from our Navier-Stokes calculations 
is compared also with the theoretical torque relationship derived by Batchelor 
(see Donnelly & Simon 1960). This relationship is obtained from a simplified flow 
model assuming that Taylor cells consist of an inviscid core surrounded by 
boundary layers. Using these assumptions, Batchelor found that the scaling law 
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Reynolds 
number Torque, Torque, Relative deviation Torque, v, R, inner cylinder outer cylinder theoretical 

~ 

V (Davey) 103 91 Q2 
91 

60.0 
65.0 
67.5 
68.0 
69.0 
70.0 
72.5 
75.0 
77.5 
80.0 
82.5 
85.0 
87.5 
90.0 
92.5 
95.0 
97.5 

100.0 

16.7551 
16.7551 
16.7551 
16.7551 
16.9347 
17.1537 
17.6752 
18.1627 
18.6208 
19.0527 
19.4613 
19.8490 
20.2177 
20.5692 
20.9051 
21.2267 
21.5352 
21.8318 

16.7552 
16.7552 
16.7551 
16.7552 
16.9348 
17.1538 
17.6753 
18.1628 
18.6208 
19.0527 
19.4613 
19.8488 
20.2173 
20.5685 
20.9041 
21.2253 
21.5333 
21.8294 

-0.0060 
-0.0060 
-0.0060 
-0.0060 
-0.0059 
-0.0058 
-0.0057 
-0.0055 

0.0000 
0.0000 
0.0000 
0.0101 
0.0198 
0.0340 
0.0478 
0.0660 
0.0882 
0.1099 

16.7552 
16.7552 
16,7552 
16.7552 
16.9382 
17.1544 
17.6563 
18.1089 
18.51 84 
18.8900 
19.2285 
19.5375 
19.8204 
20.0800 
20.3 189 
20.539 1 
20.7427 
20.9312 

TABLE 1 .  Dependence of the torque a t  the inner and outer cylinder on Reynolds number, and 
comparison with stability theory by Davey (1962) 

_ _  - - Lp V: R:(Re)-: for the (dimensional) torque. For the non-dimensional quantities 
used in the present investigation, this implies that  g = c Re:, where c is a constant. As 
the theoretical relationship is strictly valid for R-tm,  the constant c should be 
determined a t  very large Reynolds numbers. However, numerical results are only 
available for Reynolds numbers up to 690, and therefore any approach in determining 
the constant is somewhat arbitrary. Here the constant was estimated by extrapolating 
the asymptotic behaviour which can be observed when plotting g/Rei versus 1/Re. 
From this, c was estimated to be in the range between 1.75 and 1.85. For the 
comparison in figure 4(b) and table 2, the value chosen for c was 1.8. With this, the 
agreement of our Navier-Stokes data with the theoretical torque relationship is very 
reasonable, especially when considering the difficulties in determining the constant 
c and when considering the assumptions and approximations upon which the 
theoretical model is based. 

Our numerical calculations also clearly indicate that the critical Reynolds number 
is between 68 and 69. For Re = 68 no Taylor vortices arise, no matter how many 
iterations for the solution of the difference equations are carried out. Even when 
disturbances that resemble the Taylor-vortex structure are introduced, they quickly 
disappear. On the other hand, for Re = 69, Taylor vortices do quickly appear during 
the course of iteration. The critical Reynolds number could be pinpointed more 
accurately by repeating calculations between Re = 68 and Re = 69 and by placing 
the critical point between finer and finer Reynolds-number intervals. However, as 
the main objective of our numerical simulations was a detailed investigation of the 
flow fields for large supercritical Reynolds numbers, this was not pursued any further. 
Besides, Re, can be determined much more inexpensively by stability theory analysis 
(Davey 1962). On the other hand, a simple extrapolation of the torque curves for the 
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Torque, 
theoretical 

91 Q2 f i x  1 0 3  (Batchelor) 

Reynolds 
number Torque’ Torque, Relative deviation 

inner cylinder outer cylinder 

V 91 

100 21.8352 21.8360 -0.0366 18.00 
125 24.31 99 24.320 1 -0.0082 20.12 
150 26.2646 26.2647 -0.0038 22.05 
175 27.9276 27.9272 -0.0143 23.81 
200 29.4266 29.4252 0.0476 25.46 
225 30.81 95 30.81 54 0.1330 27.00 
250 32.1351 32.1285 0.2054 28.46 
275 33.3899 33.3788 0.3324 29.85 
300 34.5931 34.5757 0.5030 31.18 
325 35.7512 35.7252 0.7272 32.45 
350 36.8685 36.8310 1.0171 33.67 
375 37.9486 37.8960 1.3861 34.86 
400 38.9943 38.9227 1.8362 36.00 
425 40.0052 39.9750 0.7549 37.11 
450 40.9887 40.9562 0.7929 38.18 
475 41.9441 41.9024 0.9942 39.23 
500 42.8736 42.8207 1.2339 40.25 
525 43.7788 43.7 127 1 ,5099 41.24 
550 44.66 14 44.5798 1.8271 42.21 
575 45.5228 45.423 1 2.1901 43.16 
600 46.3642 46.2438 2.5968 44.09 
625 47.1867 47.0428 3.0496 45.00 
650 47.9907 47.8236 3.4819 45.89 

TABLE 2. Dependence of the torque a t  the inner and outer cylinder on Reynolds number and 
comparison with theory by Batchelor (see Donnelly & Simon 1960) 

Couette and for the Taylor flow (see figure 4 a )  leads to  an intersection with a critical 
Reynolds number of 68.2, which is in excellent agreement with the value of 68.18 
determined by Davey . 

5.2. Details of Jloui field 

After comparison of the calculated torque with the experimentally determined 
torque, a global quantity that can be readily measured, results are presented 
subsequently for other quantities which are more difficult to obtain experimentally 
and are thus not yet available. First, in figure 5 the radial and azimuthal velocity 
components for Re = 72.5 and Re = 80 are compared with corresponding curves 
obtained from stability analysis by Davey. For Re = 72.5 the stability theory and 
Navier-Stokes results agree quite well near the inner and outer cylinder walls, while 
slight deviations exist towards the middle of the gap. For Re = 80 the deviations in 
the middle of the gap become considerable, while agreement is still quite reasonable 
close to the cylinder walls. In  particular, the slopes of the curves at r = R, and r = R, 
are almost identical. This explains why the torque of stability theory and of the 
Navier-Stokes equations in figure 4 ( a )  can still be in good agreement up to larger 
Reynolds numbers, although details of the flow may already differ significantly. 

Of course, the difference between stability theory and the Navier-Stokes results 
would increase continuously with larger Reynolds numbers and, therefore, no further 
comparison for larger Re is made. Instead, in figure 6 results of our calculations for 



S,upercritieal Taylor-vortex $ow for a wide gap 

U 

-0.05 

1 t, .o 1.5 2.0 

r 

Z = jxz  

-0.1 I L .o 1.5 2.0 

r 

(a) 

0.1 

U 3 

3 
I 

0.0 

-0.1 

1 I I I I I I I l  

2 = 0  A 
IIIIIIIIL 

1 .o 1.5 2 
r 

-0.2 z =:I, 
1 1 1 1 1 1 I I 1  

1 .o 1.5 
r 

35 

0 
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stability theory: stability theory (Davey 1962) ; -, present (Navier-Stokes solution) ; 
( a )  Re = 72.5; ( b )  Re = 80. 
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FIQURE 6. Velocity component u at centre of gap versus z for Reynolds numbers Re = 86.6 and 
Re = 150. Comparison with other Navier-Stokes solution (Rogers & Beard 1962) : -.-.- , Rogers 
& Beard (1962) ; - , present. 

the radial velocity component versus z are compared with those of Rogers & Beard 
(1969). For Re = 86.6 the curves practically coincide. At Re = 150, which is the 
highest Reynolds number for which Rogers & Beard computed results, there is only 
an extremely small deviation, near z/A, = 0 and 1 (cell boundaries). This may be a 
possible hint that already a t  this relatively low Reynolds number the limited number 
of Fourier components used in the calculation of Rogers & Beard starts to have an 
effect on the numerical solutions (see discussion in $5.3).  

The change of the flow field with increasing Reynolds numbers is portrayed in the 
isoline plots of figure 7. There, lines of constant $, w ,  u, v and p are plotted for one 
wavelength A, (two cells) and for four representative Reynolds numbers: Re = 75, 
150, 300 and 600. It is obvious that the intensity of the vortices grows strongly with 
increasing Re (the increments used in the contour plots were identical for all Reynolds 
numbers except in the contour plots for w ) .  This is best observed in the plots of $ 
and w in figures 7 (a ,  b). Apart from the increase in intensity, a major restructuring 
of the flow field is taking place. For example the stream function pattern loses its 
symmetry with respect to a vertical and horizontal axis through the cell centre ; this 
symmetry is only present near the critical Reynolds number. First, the centres 
(extrema) of the streamline patterns are displaced from the cell centre and are shifted 
towards the cell boundaries z/h, = 0 and 1 .  Then, a t  even higher Reynolds numbers, 
the centres of the pattern move additionally towards the outer cylinder wall. 
Associated with this shift of the streamline pattern is the increasing concentration 
of vorticity a t  the outer cylinder wall and the displacement of the local extrema 
(maxima and minima) towards the corners of the cells (figure 7 b ) .  In  contrast with 
the vorticity build-up near the cylinder walls and near z /A ,  = 0 and 1, the region 
between the two cells, near z / h ,  = 0.5, which is practically void of vorticity, increases 
strongly in area for larger Re. 

This build-up of intensity of the secondary flow when Re is increased and the change 
in patterns just described reflects the evolution of a jetlike (or shocklike) structure 
in the axial plane which was observed in experiments (Snyder & Lambert 1966; 
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Burkhalter & Koschmieder 1973). The upper and lower boundaries of these plots 
( z / h ,  = 0 and 1 )  correspond to  the centre of this jet that  is directed towards the outer 
cylinder. Figures 7 (a,  b )  indicate that with increasing Re the intensity of these radial 
jets, also called ‘sources ’ (see Burkhalter & Koschmieder 1966) becomes stronger. 
Also, the width of the jet decreases, while the region where the flow is directed from 
the outer cylinder towards the inner cylinder (the so-called ‘sink ’, see Burkhalter 
& Koschmieder 1966) increases accordingly (the centre is a t  z/h, = t ) .  The build-up 
of the jetlike structure in the axial plane is also clearly exhibited in the contour plots 
for u of figure 7 (c). Already for Re = 75 the region of the sink (u < 0) has grown a t  
the expense of the region with the source (u > 0). From this point on, the sink regions 
still increase somewhat, and the contours become distorted considerably. But more 
obvious is the disproportionate growth of u (increasing density of contour lines) in 
the source regions relative to that in the sink regions. 

The drastic changes of the flow field with increasing Reynolds number become also 
particularly evident from consideration of the azimuthal velocity distribution (figure 
7 4 .  For Re just beyond critical, lines of constant v would be practically straight lines 
parallel to the cylinder walls, with a spacing in r that  would increase only slightly 
from the inner to the outer cylinder. On the other hand, for Re = 75, the contour 
lines are already warped. The lines appear to be attracted by the inner cylinder in 
a region where the sink develops, while the symmetry about the cell boundary 
z / h ,  = 0.5 is preserved. This attraction of contour lines increases dramatically with 
growing Re. At Re = 600, the contour lines are practically concentrated a t  the inner 
cylinder and in the narrow band of the radial jet region. This suggests the 
development of a boundary-layer-type behaviour for the azimuthal velocity compo- 
nent. I n  addition, i t  is evident that  a narrow jet in the azimuthal direction evolves 
at the same z-location where the radial jet occurs. There are only a few contour lines 
near the outer cylinder and in the sink region these protrude, with larger Re, more 
and more towards the inner cylinder. The centre regions of each cell become 
increasingly depleted of contour lines, which means that v varies there very little 
relative to the strong changes near the cylinder walls. The implication of this is that  
at large Re the fluid mass in the centre portion of each cell moves with almost constant 
velocity in the azimuthal direction. 

The contour plots for the w-component in figure 7 ( e )  also provide good insight into 
the changes of the flow field as Re increases. The extrema in the outer half of the 
gap are shifted more and more towards the outer wall and towards the source regions. 
This leads to the shocklike structure (suggested by Snyder & Lambert 1966) as uj 
changes across the cell boundaries z / A ,  = 0 and 1 from a negative extremum to a 
positive extremum and vice versa. However, the shocklike structure is more 
pronounced near the outer cylinder wall and somewhat less near the inner wall, while 
in the centre region of the gap it is practically non-existent. The contour lines in figure 
7 (f) for the pressure (obtained by solution of the Poisson equation (9) with a reference 
pressure such that p = 0 at z = 0, r = 0) strongly support the existence of the jetlike 
structures. In  the region where the radial jet (in the axial plane) impinges on the outer 
wall ( z / A ,  = 0 and l ) ,  the pressure increases strongly. However, it should be noted 
that the pressure increase is also a t  least partly due to the presence of the azimuthal 
jet. An excess pressure a t  the location of impingement was suggested by Snyder & 
Lambert; however, their attempt to verify this failed due to the difficulties in 
measuring the pressure. 

All in all, the contour plots of figure 7 provide an excellent survey of the qualitative 
changes in the flow- field when Re increases. The quantitative differences that develop 
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for large Re can be better observed from figure 8, however, where u, v, w, w and p 
are shown for various sections of the flow field and are compared with each other for 
the same four Reynolds numbers as before. For example, the jetlike flow development 
can be best observed in plots of u, v, w and p versus z ,  i.e. in figures 8 ( 6 ,  f, i , j ,  n ) .  For 
the radial jet, figure 8 ( b )  shows relatively large positive velocity components (directed 
towards the outer cylinder) in the jet region with a peak a t  the centre of the jet. In  
the sink region the (negative) velocity directed towards the inner cylinder is much 
smaller, with a relatively broad region where the velocity varies relatively little. The 
corresponding development of the r-distribution of the u-component a t  the centres 
of the jet and sink region is shown in figure 8 (a). 

The development of the azimuthal jet can be observed very clearly in figure 8 (f ), 
where the azimuthal velocity in the middle of the gap is plotted versus z .  For the 
largest Reynolds number, Re = 600, there is a distinct plateau in the centre region 
of the cell where the azimuthal velocity is practically constant. From there, the 
velocity increases sharply in a narrow z-region and peaks a t  the same z-location as 
that at which the velocity profile of the radial jet has its maximum. I n  contrast, the 
decrease of velocity in the sink region occurs over a much broader region, with the 
minimum at z/h, = 0.5. The r-distribution of the azimuthal jet can be assessed by 
comparing figures 8 (c, d,  e),  which show the azimuthal velocity versus r for various 
z-locations. Figures 8 (d, e )  also exhibit the build-up of the boundary-layer-type 
behaviour (for the azimuthal velocity) a t  the inner cylinder which was already 
suggested by the contour plots of figure 7 ( d ) .  The velocity distribution in the cell 
centre (figure 8 d )  also indicates the development of a boundary layer a t  the outer 
cylinder, although somewhat weaker than a t  the inner cylinder. In  the centre region 
between the two boundary layers, the azimuthal velocity changes relatively little for 
large Reynolds numbers. I n  view of the large changes near the inner and outer 
cylinder, this can be interpreted as a solid-body type motion in the azimuthal 
direction of the fluid mass in the centres of the cell. 

The pressure distributions in figures 8 ( Z - q )  clearly demonstrate the build-up of 
distinct peaks a t  the locations of the radial and azimuthal jets. This is particularly 
obvious in the distribution versus z a t  the outer wall (figure 8n), where the pressure 
is practically constant except for the pronounced peak a t  the location where the radial 
jet impinges on the outer cylinder wall. Recalling the azimuthal velocity distributions 
of figure 8 (c, f ), this pressure build-up is a t  least partly due to the increased pressure 
required to balance the centrifugal forces in the azimuthal jet. However, simple 
order-of-magnitude estimates have shown that by far the biggest contribution for the 
sharp pressure rise from the middle of the gap to the peak a t  the outer cylinder walls 
(see figure 80) is due to the deceleration and impingement of the radial jet. 

At this point, the question arises as to whether the flow field resulting from our 
calculations supports the theoretical model by Batchelor (see Donnelly & Simon 
1960), which is based on the assumption that, for Re-too, the secondary flow in the 
axial plane consists of an inviscid core surrounded by boundary layers. When 
comparing our results with this theory, one should keep in mind, however, that the 
highest Reynolds number for which numerical results were discussed in this paper 
was still only 600. 

Batchelor's theory does not address the question of symmetry of the flow pattern 
of the Taylor cells in the axial plane. The present calculations display considerable 
asymmetry of the flow pattern (see figure 7)  as the Reynolds number increases. Apart 
from the torque relationship, with which our results agree reasonably well (see §5.1), 
Batchelor's theory (Batchelor 1956) yields two important results: (a) in the core 
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region the azimuthal vorticity w is proportional to r ,  and ( b )  in the core region the 
angular momentum vr is constant. Our vorticity distributions with respect to r for 
the centre of the cell in figure 8k do indeed show a clear trend towards a linear 
variation of vorticity with r ,  and thus support result (a).  On the other hand, the 
relationship vr = constant is not quite as obvious from our results. For Re = 600, the 
curve of v versus r for the cell centre in figure 8 ( f )  shows a behaviour that could be 
interpreted as vr = constant. However, the region where such a trend is prevalent 
is still too small for quantitative confirmation of relationship (b). 

The assumption in the theoretical model that boundary layers exist along the inner 
and outer cylinder walls appears to be strongly justified in view of figures 8 (g, k). The 
vorticity distribution of figure 8 (k) indicates a development of the boundary layers 
along the inner and outer cylinder walls. For Re = 600, the vorticity is maximal 
(positive) a t  the inner and outer cylinder walls and drops off rapidly to negative values 
within thin layers near the walls. I n  contrast, in the core region vorticity is negative 
and varies linearly (as mentioned before) where the gradient is very small compared 
with the rapid variation in the wall boundary layers. The distributions of w versus 
r in figure 8 ( g )  also support the boundary-layer concept. The maxima and minima 
of the w-distributions move closer and closer towards the outer and inner cylinder 
walls, respectively, which leads to  decreasing boundary-layer thicknesses as Re 
increases. 

5.3. Harmonic components 
The profound changes of the Taylor-vortex flow when the Reynolds number is raised, 
as discussed in $5.2, are due to  nonlinear effects. According to Stuart (1960), the three 
nonlinear effects are : (a )  generation of harmonics (with respect to z )  of the fundamental 
mode, ( b )  distortion of the mean motion, and (c )  distortion of the fundamental mode. 

At first, in the theoretical investigations of Stuart (1958) only the distortion of the 
mean motion was allowed for, and later in the study by Davey (1962) all three effects 
were included, except that the number of harmonics was limited to two (i.e. one higher 
harmonic). I n  the present study all three nonlinear effects are included, since the full 
nonlinear Navier-Stokes equations are solved numerically. By simple Fourier 
decomposition of the numerically obtained data all these nonlinear effects can be laid 
bare. The flow variables can be written as sums of Fourier components; for example, 
€or the u- and v-components 

W 

U ( T ,  z )  = X i ; i (r)  sin 
j -0  

m 

j - 0  
v(r, z )  = vc(r) + X Gj(r)  sin (22b) 

and correspondingly for the other flow variables. Subscript C in 22(b) denotes the 
Couette flow. The Fourier amplitudes ti,(r), Gj(r)  and cj j ( r )  can be determined from 
numerical Fourier analysis, where the numbzr of Fourier components or harmonics 
that can be calculated is dependent on the accuracy, i.e. the number of grid points, 
used for the solution of the Navier-Stokes equations. Forj = 0 the Fourier analysis 
yields a non-fluctuating term which corresponds to the (distorted) mean motion. For 
j = 1 the Fourier distribution corresponds to the (distorted) first harmonic 
(fundamental mode) and for j = 2 ,3 ,  ... the corresponding other harmonics are 
obtained. Typical results are presented in figures 9-1 1. 

For example, in figure 9 the Fourier amplitudes Gj and w^i are shown versus Re in 
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FIQURE 10. Harmonic components fij versus r for Reynolds numbers Re = 72.5 and Re = 80; 
comparison with stability theory: -.-.- , stability theory (Davey 1962); ~ , present 
(Navier-Stokes solution). (a) Re = 72 .5 ;  ( b )  Re = 80. 

quasi-perspective plots to  elucidate the changes that the various harmonics undergo 
with increasing Reynolds number. As seen in figure 9(a) ,  the change aO-vc of the 
mean flow becomes considerable in magnitude with large Re. The shape of the 
distribution does not change very much, except that  the peak near the inner cylinder 
(with advance velocity) grows slightly faster than that (with defect velocity) near 
the outer cylinder. (The phase-angle distribution with respect to  r is shown in these 
plots for the largest Reynolds number, Re = 600, only.) The fundamental mode, j = 1 
(first harmonic), on the other hand, does not grow very much in absolute amplitude. 
Rather, there is a pronounced change of its shape. For small Re (Re = 7 5 )  i t  has the 
shape of a half sine and with increasing Re the gradients a t  the inner and outer 
cylinder become much bigger and a plateau develops (Re = 150) in the centre region 
of the gap. With further increase of Re, two distinct peaks develop near the inner 
and outer cylinder, while the plateau develops into a (sinking) valley. The second and 
third harmonics ( j  = 2, j = 3) grow rapidly for moderate supercritical Re (between 
Re = 75  and 300) and then these harmonics change mainly with respect to their 
r-distributions. It should be noted that for large Re the third harmonic in the centre 
region of the gap is larger in magnitude than the second harmonic and almost reaches 
the magnitude of the first' harmonic. 

For the higher harmonic components ( j  = 4, . . . , 7 )  the changes with increasing Re 
show up at first (up to  about Re = 300) in a strong growth, with only minor changes 
in the shape of the r-distribution. There is practically no harmonic content in the 
region close to the outer wall. It is also obvious that growth is stronger the higher 
the harmonic, i.e. the j = 4 harmonic grows faster than the j = 3, etc. For example, 
a t  Re = 600 the maximum of the seventh harmonic is about 50 o/o of that of the fourth 
harmonic. I n  addition, for larger Re (Re 2 300) the shape of the r-distributions change 
considerably. This is most noticeable for the fourth harmonic, for which two maxima 
develop near the outer cylinder. Because of these changes of shape, there is an 
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FIGURE 11. Variation of harmonic components (averaged over gap width) with Reynolds 
number: (a) 2,; (b)z,; ( c )  zj; (d )  4. 

extended region in the centre part of the gap, where the fifth harmonic considerably 
exceeds the fourth, and a smaller region where even the sixth and seventh are larger 
than the fourth. 

The Fourier components for w (figure 9b) show similar behaviour with respect to  
the growth of the harmonics for small supercritical Re and with respect to the 
pronounced changes of the r-distribution for larger Re. The changes in the r -  
distribution are particularly noticeable for the j = 2 and j = 3 components and for 
t h e j  = 4 a n d j  = 5 components. It is also obvious that with increasing Re the higher 
harmonics ( j  = 4) are more and more of the same order of magnitude for a wide region 
of the gap except near the inner and outer cylinder (see e.g. the figures for Re = 600). 

The growth and the strong changes in the amplitude distributions and the growing 
number of harmonics that become relevant when Re increases, explain the deviation 
between the analytical results (Davey 1962) for the torque (figure 4) and the u- and 
v-components (figure 5) and the Navier-Stokes results. Davey's analysis is based, 
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after all, specifically on an expansion about the critical Reynolds number and only 
2 harmonic components were allowed for. A comparison of the Fourier components 
for the v-component obtained by Davey with our Navier-Stokes calculations in figure 
10 clearly reveals the deviations even for moderate supercritical Re. For Re = 72.5 
in figure 10 (a )  the deviations are only minor, whereas for Re = 80 (in figure lob) the 
deviations, especially in the centre region of the gap, become more substantial. 

Figure 9 provides a qualitative survey of how nonlinearity, i.e. increasing Reynolds 
number, leads to the creation and growth of harmonics and how the distributions 
of the harmonic components can change. It has also become clear that  the local growth 
of the harmonics with Re is strongly dependent on the r-coordinate and on the flow 
variable in consideration. To be able to provide consistent comparison of the growth 
curves for different harmonics, the amplitude distributions for the harmonics were 
averaged over the gap width; for example, for u, 

The development of these average amplitudes with Re is shown in figure 11 for the 
first twelve harmonics. Now it  becomes even more obvious how the higher harmonics 
come in rapidly when Re increases. Typically, the lower the harmonic the stronger 
is its initial growth. But, more important, beyond the strong amplification there is 
a rapid levelling off with an obvious asymptotic behaviour, which indicates a 
saturation mechanism. Thus, for larger Re the lower harmonics remain practically con- 
stant while higher harmonics still grow rapidly with Re. For the azimuthal velocity 
component in figure 11 ( 6 )  the fundamental mode ( j  = 1)  even overshoots and then 
approaches a constant value. Also, the odd-numbered components j = 3, 5, 7,  ... 
overtake their corresponding preceding even-number components j = 2, 4, 6, . . . . 

Thus for larger Re an unexpectedly large number of harmonics contribute to the 
total solution. For example, for vorticity (figure 11 d )  at the largest Reynolds number 
calculated, the j = 12 component still has more than 20 % of the amplitude of j = 3 
component! This fact is a possible explanation why, in the comparison of our 
calculations with those of Rogers & Beard for Re = 150 (figure 6) ,  a slight deviation 
starts to develop a t  the jet location ( z  = 0). Rogers & Beard used six components in 
their calculations. For the u-component in figure 1 1  (a ) ,  for example, at Re = 150 the 
j = 7 harmonic is still approximately 50 yo of the j = 6 harmonic in amplitude, and 
even t h e j  = 9 harmonic is still 10% of t h e j  = 6 component. And, recalling figure 
9, local differences between higher and lower components may be even less, or higher 
harmonics can locally be even larger than the lower ones. 

6. Conclusion 
An implicit finitedifference method of fourth-order accuracy has been employed 

to investigate the Taylor-vortex flow in a wide gap (RJR,  = 0.5) for large supercritical 
Taylor numbers. The numerical results presented in this paper provide evidence of 
considerable changes in the flow field as the Taylor number is increased from low to 
high supercritical Taylor numbers up to  lOOTa,. Detailed analysis of various flow 
variables, such as velocity components, stream function, vorticity and pressure, 
strongly supports the concept of an evolving jetlike (shocklike) structure when the 
Taylor number is increased. A good indication of this is found, in particular, in the 
pressure peaks that develop on the outer cylinder wall a t  the locations of jet 
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impingement. For large supercritical Taylor numbers the flow exhibits a boundary- 
layer-type structure a t  the inner and outer cylinder walls for both the flow in the 
axial plane and the flow in the azimuthal direction. I n  contrast, the flow in the core 
region in the axial plane behaves as essentially inviscid. The azimuthal velocity varies 
very little in the centre region of the cell, which can be interpreted as an approximate 
solid-body-type motion in the azimuthal direction of the fluid in this region. Spectral 
decomposition of the computed flow quantities has shown that a relatively large 
number of higher harmonic components are required to resolve these strong changes 
of the flow field for large Taylor numbers. 
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